On Saito’s Vanishing Theorem

نویسنده

  • CHRISTIAN SCHNELL
چکیده

We reprove Saito’s vanishing theorem for mixed Hodge modules by the method of Esnault and Viehweg. The main idea is to exploit the strictness of direct images on certain branched coverings.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kodaira-saito Vanishing and Applications

The first part of the paper contains a detailed proof of M. Saito’s generalization of the Kodaira vanishing theorem, following the original argument and with ample background. The second part contains some recent applications, and a Kawamata-Viehweg-type statement in the setting of mixed Hodge modules.

متن کامل

Vanishing of Ext-Functors and Faltings’ Annihilator Theorem for relative Cohen-Macaulay modules

et  be a commutative Noetherian ring,  and  two ideals of  and  a finite -module. In this paper, we have studied the vanishing and relative Cohen-Macaulyness of the functor for relative Cohen-Macauly filtered modules with respect to the ideal  (RCMF). We have shown that the for relative Cohen-Macaulay modules holds for any relative Cohen-Macauly module with respect to  with ........

متن کامل

Generic Vanishing Theory via Mixed Hodge Modules

We extend most of the results of generic vanishing theory to bundles of holomorphic forms and rank-one local systems, and more generally to certain coherent sheaves of Hodge-theoretic origin associated with irregular varieties. Our main tools are Saito’s mixed Hodge modules, the Fourier–Mukai transform for D-modules on abelian varieties introduced by Laumon and Rothstein, and Simpson’s harmonic...

متن کامل

A Morphism of Intersection Homology and Hard Lefschetz

We consider a possibility of the existence of intersection homology morphism, which would be associated to a map of analytic varieties. We assume that the map is an inclusion of codimension one. Then the existence of a morphism follows from Saito’s decomposition theorem. For varieties with conical singularities we show, that the existence of intersection homology morphism is exactly equivalent ...

متن کامل

On the Brauer-Manin obstruction for zero-cycles on curves

We wish to give a short elementary proof of S. Saito’s result that the Brauer-Manin obstruction for zero-cycles of degree 1 is the only one for curves, supposing the finiteness of the Tate-Shafarevich-group X1(A) of the Jacobian variety. In fact we show that we only need a conjecturally finite part of the Brauer-group for this obstruction to be the only one. We also comment on the situation in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014